C++ Classes, Constructor
&
Object Oriented Programming

Object Oriented Programming

» Programmer thinks about and defines the attributes and
behavior of objects.

» Often the objects are modeled after real-world entities.

» Very different approach than function-based
programming (like C).

Object Oriented Programming

» Object-oriented programming (OOP)

» Encapsulates data (attributes) and functions (behavior)
into packages called classes.

» So, Classes are user-defined (programmer-defined)
types.

» Data (data members)
» Functions (member functions or methods)

» In other words, they are structures + functions

Classes in C++

» Aclass definition begins with the keyword class.

» The body of the class is contained within a set of
braces, { }; (notice the semi-colon).

Any valid
identifier

Class body (dat
+ methods)

Classes in C++

» Within the body, the keywords private: and public:
specify the access level of the members of the class.

» the default is private.

» Usually, the data members of a class are declared in the
private: section of the class and the member functions
are in public: section.

Classes in C++

private members o
methods

Public members or m

Classes in C++

» Member access specifiers

» public:
» can be accessed outside the class dlrectl

» The public stuff is the interface.

» private:

» Accessible only to member functions of class

» Private members and methods are for internal use only.

Class Example

» This class example shows how we can encapsulate
(gather) a circle information into one package (unit or
class)

No need for others ¢
access and retrieve
directly. The

class methods are res
that only.

They are accessible fra
the class, and they ca
member (radius)

Creating an object of a Class

» Declaring a variable of a class type
creates an o I%ect You can have many
variables of the same type (class).

» Instantiation

» Once an object of a certain class is
instantiated, a new memory location is
created for it to store its data
members and code

» You can instantiate many objects from
a class type.

» Ex) Circle c; Circle *c;

Special Member Functions

» Constructor:
» Public function member
called when a new object is created (instantiated).
Initialize data members.
Same name as class

No return type

vV v.v Vv Y

Several constructors

» Function overloading

Special Member Functions

Constructor
argument

Constructor wit
argument

Implementing class methods

> C}asFalsgnﬁ]l merc\itatlon writing the code

» There are two ways:
1. Member functions defined outside class
» Using Binary scope resolution operator (: :)
» “Ties” member name to class name
» Uniquely identify functions of particular class

» Different classes can have member functions
with same name

» Format for defining member functions
ReturnType
—Ci'a'ggvame: :MemberFunctionName () {

}

Implementing class methods

2. Member functions defined inside class

» Do not need scope resolution
operator, class hame;

Defined outs

Accessing Class Members

» Operators to access class members
» ldentical to those for structs
» Dot member selection operator (.)
» Object
» Reference to object
» Arrow member selection operator (->)

» Pointers

—— 1

The second
constructor is
called

. y |\
void main () Since radius is a

{ private class data
Circle cl,c2(7); member

P

cout<<“The area of
<<cl.getArea

//cl.raduis = 5;//syntax error
cl.setRadius (5) ;

cout<<“The circumference of cl:”
<< cl.getCircumference () <<“\n”;

cout<<“The Diameter of c2:”
<<c2.getDiameter () <<“\n”;

void main ()
{
Circle c(7);
Circle *cpl &c;
Circle *cp?2 new Circle(7);

cout<<“The are of cp2:”
<<cp2->getAreal();

Destructors

» Destructors
» Special member function

» Same name as class
» Preceded with tilde (~)

» No arguments
» No return value
» Cannot be overloaded

» Before system reclaims object’s memory
» Reuse memory for new objects

» Mainly used to de-allocate dynamic memory
locations

Another class Example

» This class shows how to handle time parts.

Destructor
S

Al

Dynamic locations
should be allocated
to pointers first

Destructor: used here to de-
allocate memory locations

Output:
The time is : (3:55:54)

Thetimeis : (7:17:43)
Press any key to continue

When executed, the
destructor is called

Reasons for OOP

1. Simplify programming

2. Interfaces

» Information hiding:

> Implementation details hidden within classes themselves
3. Software reuse

> Class objects included as members of other classes

