
C++ Classes, Constructor

&

Object Oriented Programming

Object Oriented Programming

 Programmer thinks about and defines the attributes and

behavior of objects.

 Often the objects are modeled after real-world entities.

 Very different approach than function-based

programming (like C).

Object Oriented Programming

 Object-oriented programming (OOP)

 Encapsulates data (attributes) and functions (behavior)
into packages called classes.

 So, Classes are user-defined (programmer-defined)
types.

 Data (data members)

 Functions (member functions or methods)

 In other words, they are structures + functions

Classes in C++

 A class definition begins with the keyword class.

 The body of the class is contained within a set of

braces, { } ; (notice the semi-colon).

class_nameclass

{

 ….

….

….

};

Class body (data member

+ methods)

Any valid

identifier

Classes in C++

 Within the body, the keywords private: and public:
specify the access level of the members of the class.

 the default is private.

 Usually, the data members of a class are declared in the
private: section of the class and the member functions
are in public: section.

Classes in C++

 class_nameclass

{

 private:

 …

 …

 …

 public:

 …

 …

 …

};

Public members or methods

private members or

methods

Classes in C++

 Member access specifiers
 public:

 can be accessed outside the class directly.

The public stuff is the interface.
 private:

 Accessible only to member functions of class

 Private members and methods are for internal use only.

Class Example

 This class example shows how we can encapsulate

(gather) a circle information into one package (unit or

class)

class Circle

{

 private:

 double radius;

 public:

 void setRadius(double r);

 double getDiameter();

 double getArea();

 double getCircumference();

};

No need for others classes to

access and retrieve its value

directly. The

class methods are responsible for

that only.

They are accessible from outside

the class, and they can access the

member (radius)

Creating an object of a Class

 Declaring a variable of a class type
creates an object. You can have many
variables of the same type (class).
 Instantiation

 Once an object of a certain class is
instantiated, a new memory location is
created for it to store its data
members and code

 You can instantiate many objects from
a class type.
 Ex) Circle c; Circle *c;

Special Member Functions

 Constructor:

 Public function member

 called when a new object is created (instantiated).

 Initialize data members.

 Same name as class

 No return type

 Several constructors

 Function overloading

Special Member Functions

class Circle

{

 private:

 double radius;

 public:

 Circle();

 Circle(int r);

 void setRadius(double r);

 double getDiameter();

 double getArea();

 double getCircumference();

};

Constructor with no

argument

Constructor with one

argument

Implementing class methods

 Class implementation: writing the code
of class methods.

 There are two ways:
1. Member functions defined outside class

 Using Binary scope resolution operator (::)

 “Ties” member name to class name

 Uniquely identify functions of particular class

 Different classes can have member functions
with same name

 Format for defining member functions
ReturnType

ClassName::MemberFunctionName(){

 …

}

Implementing class methods

2. Member functions defined inside class

 Do not need scope resolution

operator, class name;

class Circle

{

 private:

 double radius;

 public:

 Circle() { radius = 0.0;}

 Circle(int r);

 void setRadius(double r){radius = r;}

 double getDiameter(){ return radius *2;}

 double getArea();

 double getCircumference();

};

Defined

inside

class

class Circle

{

 private:

 double radius;

 public:

 Circle() { radius = 0.0;}

 Circle(int r);

 void setRadius(double r){radius = r;}

 double getDiameter(){ return radius *2;}

 double getArea();

 double getCircumference();

};

Circle::Circle(int r)

{

 radius = r;

}

double Circle::getArea()

{

 return radius * radius * (22.0/7);

}

double Circle:: getCircumference()

{

 return 2 * radius * (22.0/7);

}

Defined outside class

Accessing Class Members

 Operators to access class members

 Identical to those for structs

 Dot member selection operator (.)

 Object

 Reference to object

 Arrow member selection operator (->)

 Pointers

class Circle

{

 private:

 double radius;

 public:

 Circle() { radius = 0.0;}

 Circle(int r);

 void setRadius(double r){radius = r;}

 double getDiameter(){ return radius *2;}

 double getArea();

 double getCircumference();

};

Circle::Circle(int r)

{

 radius = r;

}

double Circle::getArea()

{

 return radius * radius * (22.0/7);

}

double Circle:: getCircumference()

{

 return 2 * radius * (22.0/7);

}

void main()

{

 Circle c1,c2(7);

 cout<<“The area of c1:”

 <<c1.getArea()<<“\n”;

 //c1.raduis = 5;//syntax error

 c1.setRadius(5);

 cout<<“The circumference of c1:”

 << c1.getCircumference()<<“\n”;

 cout<<“The Diameter of c2:”

 <<c2.getDiameter()<<“\n”;

}

The first

constructor is

called

The second

constructor is

called

Since radius is a

private class data

member

class Circle

{

 private:

 double radius;

 public:

 Circle() { radius = 0.0;}

 Circle(int r);

 void setRadius(double r){radius = r;}

 double getDiameter(){ return radius *2;}

 double getArea();

 double getCircumference();

};

Circle::Circle(int r)

{

 radius = r;

}

double Circle::getArea()

{

 return radius * radius * (22.0/7);

}

double Circle:: getCircumference()

{

 return 2 * radius * (22.0/7);

}

void main()

{

 Circle c(7);

 Circle *cp1 = &c;

 Circle *cp2 = new Circle(7);

 cout<<“The are of cp2:”

 <<cp2->getArea();

}

Destructors

 Destructors

 Special member function

 Same name as class

 Preceded with tilde (~)

 No arguments

 No return value

 Cannot be overloaded

 Before system reclaims object’s memory

 Reuse memory for new objects

 Mainly used to de-allocate dynamic memory
locations

Another class Example

 This class shows how to handle time parts.

class Time

{

 private:

 int *hour,*minute,*second;

 public:

 Time();

 Time(int h,int m,int s);

 void printTime();

 void setTime(int h,int m,int s);

 int getHour(){return *hour;}

 int getMinute(){return *minute;}

 int getSecond(){return *second;}

 void setHour(int h){*hour = h;}

 void setMinute(int m){*minute = m;}

 void setSecond(int s){*second = s;}

 ~Time();

};

Destructor

Time::Time()

{

 hour = new int;

 minute = new int;

 second = new int;

 *hour = *minute = *second = 0;

}

Time::Time(int h,int m,int s)

{

 hour = new int;

 minute = new int;

 second = new int;

 *hour = h;

 *minute = m;

 *second = s;

}

void Time::setTime(int h,int m,int s)

{

 *hour = h;

 *minute = m;

 *second = s;

}

Dynamic locations

should be allocated

to pointers first

void Time::printTime()

{

 cout<<"The time is : ("<<*hour<<":"<<*minute<<":"<<*second<<")"

 <<endl;

}

Time::~Time()

{

 delete hour; delete minute;delete second;

}

void main()

{

 Time *t;

 t= new Time(3,55,54);

 t->printTime();

 t->setHour(7);

 t->setMinute(17);

 t->setSecond(43);

 t->printTime();

 delete t;

}

Output:

The time is : (3:55:54)

The time is : (7:17:43)

Press any key to continue

Destructor: used here to de-

allocate memory locations

When executed, the

destructor is called

Reasons for OOP

1. Simplify programming

2. Interfaces

 Information hiding:
 Implementation details hidden within classes themselves

3. Software reuse

 Class objects included as members of other classes

